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Abstract—Graph computation has attracted a significant
amount of attention since many real-world data come in the
format of graph. Conventional graph platforms are designed
to accommodate a single large graph at a time, while simul-
taneously processing a large number of in-memory graphs
whose sizes are small enough to fit into the device memory
are ignored. In fact, such a computation framework is needed
as the in-memory graphs are ubiquitous in many applications,
e.g., code graphs, paper citation networks, chemical compound
graphs, and biology graphs. In this paper, we design the
first large-scale in-memory graphs computation framework
on Graphics Processing Units (GPUs), SWARMGRAPH. To
accelerate single graph computation, SWARMGRAPH comes
with two new techniques, i.e., memory-aware data placement
and kernel invocation reduction. These techniques leverage
the fast memory components in GPU, remove the expensive
global memory synchronization, and reduce the costly kernel
invocations. To rapidly compute many graphs, SWARMGRAPH
pipelines the graph loading and computation. The evalua-
tions on large-scale real-world and synthetic graphs show
that SWARMGRAPH significantly outperforms the state-of-the-
art CPU- and GPU-based graph frameworks by orders of
magnitude.

1. Introduction

Graph, made up of vertex and edge, is a natural represen-
tation for many real-world applications [1], [2], [3], [4]. As
graph algorithms can help to mine useful and even hidden
knowledge, they are of particular importance. Towards that
need, we have witnessed a surge of interests in graph
computation in various directions, including shared memory,
distributed system, and graphics processing unit (GPU) [5],
(61, [71.

1.1. Motivation

While a vast majority of the graph computation frame-
work, by default, assumes to process a single large graph,
this paper unveils that rapidly processing a zoo of in-
memory graphs is equally important. Here, we regard a
graph as in-memory if it is able to reside in the GPU shared
memory (up to 96KB in Nvidia Tesla V100 GPU). Such an
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Figure 1: Graph size distribution of the 1.8 million con-

trol flow graphs for binary code vulnerability detection
from [11], [12].

in-memory graph framework is needed from the following
three aspects.

First, in-memory graphs are popular in real-world ap-
plications. Here, we will elaborate on four of them. (1) In
the paper citation, the graph sizes (in terms of vertex count)
are smaller than 100 for the 19.5 thousand graphs from a
DBLP dataset [8]. (2) In the chemical compound, the graph
sizes are smaller than 200 for all the 8.2 thousand graphs
from NCI1 and NCI109 dataset [8], [9]. (3) In biology, the
graph sizes of a protein dataset with 1.1 thousand graphs are
smaller than 600 [8], [10]. (4) In binary code vulnerability
detection, the control flow graph (CFG) comes with a small
number of vertices as shown in Figure 1. Note, each function
inside the binary code is represented as a CFG, where a
vertex denotes a code block and an edge denotes the control
flow relationship between code blocks [11], [12], [13].

In addition, concurrently processing a collection of in-
memory graphs is widely needed, while the system dedi-
cated to this direction, to the best of our knowledge, is ab-
sent. Still using the binary code vulnerability detection as an
example, for each control flow graph, one needs to compute
the betweenness centrality (BC) and other algorithms to find
the important vertex and edge [11], [12], [13]. However,
current graph frameworks, which run one algorithm on a
single graph at a time, will take an absurdly long time to
process a million control flow graphs which is the case in
the binary vulnerability detection works [11], [12], [13].

Third, although recent graph computation methods on
GPU greatly improve the performance [14], [15], they usu-



ally aim at a single large graph, which will cause low
resource utilization when applied to a large number of in-
memory graphs. To begin with, conventional graph frame-
works routinely assign all GPU threads to work on one
graph at a time, while this single in-memory graph is usually
not able to saturate all the GPU resources, i.e., threads. In
addition, due to the limitation of global thread synchroniza-
tion support, these frameworks have to either terminate the
kernel after each iteration or use the expensive GPU device
level synchronization, e.g., cooperative groups [16], to syn-
chronize all the threads. Further, existing frameworks place
computation metadata' in slow global memory because it
assumes they are too big to be stored in the fast but small
GPU memory components, e.g., shared memory.

1.2. Contribution

In this work, we have designed a new GPU-based graph
computation framework for processing a large number of
in-memory graphs, namely SWARMGRAPH. As shown in
Figure 2, given many in-memory graphs, SWARMGRAPH
leverages the task scheduler to distribute the workload to
each GPU. On each GPU, SWARMGRAPH applies our newly
designed pipelining technique to pipeline the graph loading
and computation for many graphs. For each graph, our
memory-aware data placement strategy carefully places dif-
ferent data in different memory components to reduce the
memory access latency. Further, our kernel invocation re-
duction (KIR) strategy carefully schedules the GPU threads
to reduce the number of expensive kernel invocations and
avoid global memory synchronizations. The contributions
are three-fold.

First, observing the conventional GPU platforms are not
efficient for computing one in-memory graph, we design
two new techniques, memory-aware data placement, and
kernel invocation reduction. They are able to leverage the
fast memory components in GPU, remove the expensive
global memory synchronization, and reduce the number of
costly kernel invocations. With these optimizations, SWAR-
MGRAPH is able to outperform both CPU- and GPU-based
graph frameworks by several orders of magnitude.

Second, to accelerate the computation of many graphs,
we design a pipelining technique motivated by the fact that
the data dependency only exists in the graph loading and
computation of one graph, while does not exist between
different graphs. The pipelining technique is able to bring
1.9x speedup for the computation of many graphs.

Third, we have implemented SWARMGRAPH with three
frequently used graph algorithms, all-pairs shortest path
(APSP), closeness centrality (CC), and betweenness central-
ity (BC). We tested SWARMGRAPH with two graph bench-
marks, i.e., protein graphs and one million synthetic graphs.
For one graph computation on the protein graphs, SWAR-
MGRAPH achieves 314x,93x,24x, and 19x speedup over
the parallel CPU implementation, conventional GPU, Gun-
rock, and Hybrid BC, respectively. Further, for many graphs

1. We regard the original vertex and edge information as the graph data,
the intermediate information of the vertex and edge as metadata [14].
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Figure 2: Overview of SWARMGRAPH.

computation on the one million synthetic graphs, SWARM-
GRAPH is able to significantly reduce the total runtime of
the three algorithms from 248.5 to 34.4 minutes.

Due to the page limit, we moved out some detailed de-
scriptions, that can be found in the full technical report [17].
The rest of the paper is organized as follows: Section 2
introduces the background. Section 3 presents the design of
SWARMGRAPH. Section 4 evaluates SWARMGRAPH. Sec-
tion 5 summarizes the related works. Section 6 discusses
and Section 7 concludes the paper.

2. Background

This section discusses the background of the CUDA
programming model and GPU architecture.

The Nvidia CUDA programming model includes grid,
cooperative thread array (CTA), warp, and thread [18], [19].
A grid consists of multiple CTAs, which are also known
as blocks. A grid is mapped as one GPU chip from the
hardware point as shown in Figure 3. A GPU chip includes
many multiple processors (MPs), and each MP handles the
computation of one or more blocks. Each MP is composed
of many streaming processors (SMs) that handle the com-
putation of one or more threads.

In each grid, all the threads share the same global
memory, texture memory, and constant memory as shown
in Figure 3. The texture memory and constant memory are
read-only, while global memory can be read and written. In
each block, all the threads share the same shared memory,
which can be read and written. It can be accessed by the
threads in the same block, but cannot be accessed by outside
threads. The configurable shared memory and L1 cache
share the total memory size (64KB for Tesla K40 GPU).
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TABLE 1: Data placement comparison with conventional
graph platforms. GDDR means GPU global memory, the
latency is in the clock cycle.

Memory (Tesla K40) Conventional graph SWARMGRAPH
Name Size Latency | platforms [14], [5]
Register 65,536 | - on-demand Graph, metadata
L1 + Shared | 64KB | ~20 Hub vertex Metadata
L2 cache 1.5MB | ~80 on-demand on-demand (graph)
GDDR 12GB | ~400 Graph, metadata Graph, metadata

Each thread is assigned with its own registers for reading
and writing.

Among the read and write memory, global memory is
off-chip, while the shared memory is on-chip. Therefore,
the shared memory has a smaller size, but much higher
bandwidth and lower latency. Taking Tesla K40 GPU as
an example (Table 1), whose compute capability is 3.5, the
global memory size is 12GB, while the shared memory size
is 48KB per block. However, the shared memory latency is
about 20 times faster than global memory. Thus, moving the
computation to the shared memory can significantly reduce
the latency.

3. Design of SWARMGRAPH

This section presents the design of SWARMGRAPH.
Firstly, we will discuss the techniques for computing one
single in-memory graph, i.e., memory-aware data placement
and kernel invocation reduction. Later, we will discuss our
pipelining technique for many in-memory graphs. Finally,
we will discuss the currently implemented graph algorithms.

3.1. Memory-Aware Data Placement

Our memory-aware data placement aims to place differ-
ent types of data on different memory components to fully
utilize the resources. In general, we try to put the frequently
and randomly accessed metadata in the fast memory compo-
nents, such as shared memory and register, while the graph
data in the global memory.

The graph computation typically operates on two types
of data, namely, graph data and computation metadata.
Using the all-pairs shortest path algorithm as an example,
the graph data is the original graph representation while
the metadata is the distance array that records the distance
from every vertex to others. The access patterns of these
two data types vary dramatically. The graph data is ac-
cessed sequentially and consecutively since the neighbors
of a vertex are stored adjacently. However, the metadata
is accessed randomly since each vertex may connect to
random neighbors. Also, the metadata is frequently updated.
Therefore, metadata suffers from frequent random access,
which will lead to severer cache misses than graph data.

The conventional graph computation frameworks, e.g.,
Gunrock [5], put both graph data and metadata in the global
memory. Differently, SWARMGRAPH puts the frequently
updated metadata into the fast shared memory, while loads
the graph data into global memory. Table 1 presents the way

(a) A graph with edge
weight 1

(b) SSSP traversal from vertex a, b, and ¢

Figure 4: Computing all-pairs shortest path on an example
graph shown in (a), the single-source shortest path traversal
from vertex a, b, and ¢ are shown in (b).

we organize different data structures in SWARMGRAPH. As
metadata is mostly randomly accessed in graph computa-
tion [20], such a design is able to tremendously improve
the performance. From the access latency wise, the shared
memory is about 20x faster than the global memory as
shown in Table 1. Although the L2 cache is on-demand for
SWARMGRAPH, it is worth noting that the whole graph data
is likely to reside in it for two reasons. First, algorithmic
metadata will not compete with graph data for the L2 cache
space, leaving graph data exclusive resident of the L2 cache.
Second, the graph of interests is sufficiently small that can
fit in the L2 cache.

3.2. Kernel Invocation Reduction

It usually takes several iterations to converge for graph
computation. Taking the all-pairs shortest path (APSP) al-
gorithm as an example, one needs to run the number of
iterations equaling the length of the longest path. For the
example graph in Figure 4(a), one needs to run 6 iterations
because the longest path is 6 (from vertex b). During com-
putation, one needs to synchronize after each iteration to
get the correct result. Prior methods rely on terminating
the GPU kernel at the end of each iteration to achieve
global synchronization [14]. Such a design needs to invoke
the kernel multiple times, e.g., 6 for the example graph.
This is low efficiency because, one, kernel invocation itself
is costly [21], two, the synchronization will generate extra
global memory traffic [22].

Motivated by that, we design the kernel invocation re-
duction (KIR) technique to significantly reduce the number
of kernel invocations. Firstly, KIR tries to divide the entire
computation task into a number of independent sub-tasks.
For the all-pairs shortest path (APSP) algorithm, one can
divide it into many single-source shortest path (SSSP) com-
putations running from every vertex. For the example graph
with 9 vertices in Figure 4(a), the APSP can be divided into
9 independent SSSPs. KIR is used in closeness centrality
(CC) for computing APSP and betweenness centrality (BC)
for computing single-source betweenness centrality starting
from every vertex.

Secondly, leveraging the small size property of the in-
memory graph, one can assign a single block to compute
a sub-task without communicating with others. In other



words, after one iteration, one only needs to synchronize the
metadata with the threads in the same block. For the example
graph in Figure 4(a), the SSSP computation metadata from
vertex a in Figure 4(b) does not need to synchronize with the
one from vertex b. As the metadata is stored in the shared
memory by our memory-aware data placement technique,
we can synchronize it with the well supported intra-block
synchronization, i.e., __syncthreads (). In this way, we
are able to replace the synchronization from the expensive
global memory with the fast shared memory.

To this end, KIR is able to reduce the number of kernel
invocations by over one order of magnitude. Particularly, for
one in-memory graph, KIR only invokes the kernel by 1, 2,
and 2 times for all-pairs shortest path, closeness centrality,
and betweenness centrality, respectively. KIR works for the
graph algorithms that can be divided and conquered. Not
limited to the three algorithms, many others fall into this
discipline, such as node embedding generation algorithms
(Node2vec [23], DeepWalk [24], LINE [25], etc.), PageR-
ank, and other centrality algorithms.

3.3. Pipelining

With a GPU, one needs two basic steps to compute a
graph, that is, loading a graph from the disk into the mem-
ory, and computing on the GPU. With many graphs, this
process will be repeated till the end as shown in Figure 5.
Particularly, the CPU handles the loading process, and the
GPU works on the computation. That means, the CPU is
idle while the GPU computes the graph and vice versa. In
this process, the data dependency only exists between the
loading and computation of the same graph but does not
exist between two graphs.

Motivated by that, we design a pipelining technique for
many graphs scenario. That is, we split the graph loading
and computation into two tasks. In particular, one CPU
thread keeps loading the graphs from the disk into the
memory, while another CPU thread launches the GPU kernel
to compute the graphs. The pipelining design is shown in
Figure 5. In our implementation, we maintain a task queue
shared by the two threads to accomplish this. The graph
loading thread loads the graph and pushes the graph into the
queue, while the computation thread reads from the queue,
and invokes a GPU kernel to compute. Such a two-way
pipelining design is able to get up to 2x speedup which
can be reached when the loading and computation take the
same time.

We also leverage the asynchronous APIs provided by
CUDA, such as memory copy and memory set, to overlap
the execution of some host and device code. We also notice
that the CUDA stream is designed to concurrently run
different kernels on the same GPU device [26]. However,
their purpose is different from ours since the computation
of one graph needs to exclusively occupy the whole GPU
device. In other words, we can only run one kernel at a time.

. raph 1 ! Graph 2 ! Graph 3
Traditional
workflow |Load grapt{ Compute | Load grapt{ Compute |Load grapr{ Compute

Pipelining |Load grapr{ Load grapﬂ Load grapﬂ

| Compute | Compute | Compute |

Figure 5: The pipelining in SWARMGRAPH.

3.4. Graph Algorithms

Currently, SWARMGRAPH implements three popular
graph algorithms, i.e., all-pairs shortest path (APSP), close-
ness centrality (CC), and betweenness centrality (BC). These
algorithms are vital for graph analytics and are widely
used in the analysis of source and binary code [11], social
network [27], chemical network [28], and biological net-
work [29]. Not limited, the techniques of SWARMGRAPH
can be applied to more graph algorithms, such as (weakly)
connected component, strongly connected component, and
triangle counting. We will explore these graph algorithms
in the future.

All-pairs shortest path (APSP) computes the shortest
path from every vertex to all the others. The single-source
shortest path (SSSP) algorithm computes the shortest path
from a source vertex to all the others. By combining the
SSSP from every vertex, we can get the APSP. SWARM-
GRAPH stores the original graph data (adjacent vertices of
each vertex adj_v(4), and the weight between them w; ;) in
the global memory. We invoke just one kernel to compute
the APSP and assign each block to compute the SSSP from
each source vertex to others. After computation, SWARM-
GRAPH copies the SSSP result from the shared memory to
the global memory.

Closeness centrality (CC) measures the importance of
every vertex in a graph. The CC value of a vertex is defined
as the reciprocal of the sum of the shortest distances from
other vertices to it as shown in Equation 1. The more
important a vertex, the smaller the sum of the shortest
distances from other vertices, and the larger value of CC.
If a graph is not strongly connected (a vertex may not
be reachable by others), Equation 2 is normally used to
calculate the closeness centrality If a vertex a cannot reach
b, the distance is infinite and - f is defined as 0. Its CC is
defined as the sum of the re(:lprocal of the shortest distances.

.
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CC is implemented with two kernel invocations by
SWARMGRAPH. The first kernel computes APSP with mul-
tiple blocks, and the second one accumulates CC from every
vertex using Equation 2 with one block.

Betweenness centrality (BC) is another centrality mea-
sure to understand the importance of the vertices in a graph.
It shows the frequency of a vertex acting as an intermediate



TABLE 2: Specifications of protein graphs (Benchmark I).

Group Graph size # of graphs Avg. vertex Avg. edge
Gl (0, 128) 208 80 292
G2 [128, 256) 452 179 711
G3 [256, 384) 258 316 1270
G4 [384, 512) 130 438 1764
Total (0, 512) 1048 225 896

TABLE 3: Specifications of one million synthetic graphs
(Benchmark II).

Size 32 64 128 256 512 1024

RMAT | 57,795 | 58,881 | 110,831 | 104,287 | 105,780 | 107,020
Random | 42,205 | 41,119 | 89,169 | 95,713 | 94,220 | 92,980
Total 100,000 | 100,000 | 200,000 | 200,000 | 200,000 | 200,000

vertex along the shortest paths in the whole graph. As
defined in Equation 3, the computation of BC includes
two steps. First, we compute the single-source BC (bes(t)),
which is the number of shortest paths from vertex s to others
passing through vertex ¢ (o5 .(t)) over the total number of
shortest paths from vertex s to others (o, ). Second, we
accumulate the single-source BC value to get the final BC
value (bc(t)).

bcs(t)zaz*<)t7éstseV

c(t) = Zbcs(t

SWARMGRAPH invokes two kernels, one for single-
source BC computation, the other for accumulation. The
first kernel utilizes all the blocks and threads to compute the
single-source BC starting from all the vertices. The second
one recursively accumulates each single-source BC to get
the final BC using the Brandes method [27].
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4. Experiment

In this experiment, we first compare SWARMGRAPH
with related works on computing one in-memory graph.
Later, we scale SWARMGRAPH to compute one million
graphs.

4.1. Graph Benchmarks

We use the following two graph benchmarks for the
experiment.

« Benchmark I: Protein graphs. We get 1, 048 real-world
protein graphs from the protein graph repository [30]. We
divide them into four groups based on graph size (vertex
count) with 128 as the division step. The specifications
are summarized in Table 2. This benchmark is used to
evaluate the performance of computing one single graph
between SWARMGRAPH and related works.

« Benchmark II: One million synthetic graphs. We gen-
erate one million synthetic graphs with both RMAT and
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Figure 6: Speedup of SWARMGRAPH over related works on
computing a single graph for (a) BC, (b) CC, and (c) APSP.

random graph generators from X-Stream [31]. The graph
sizes (number of vertices) in the synthetic graphs are set
to 32, 64, 128, 256, 512, and 1,024, respectively. For
each graph, the average degree is set to a random number
between 8 and 16. The specifications are summarized in
Table 3. This benchmark is used to evaluate SWARM-
GRAPH on scaling to million graphs and multiple GPUs.

4.2. Experiment Setting

The experiments are performed on a server running
CentOS 7.6 with two Intel Xeon Gold 6126 CPUs, each
of which has 12 cores and enables hyper-threading. The
server is equipped with eight Nvidia Titan GPUs, including
six Titan V and two Titan XP. The same Nvidia Titan
V GPU is used for single GPU test. SWARMGRAPH is
implemented with over 2,000 lines of CUDA and C++ code.
SWARMGRAPH is compiled with GCC 4.8.4 and Nvidia
CUDA toolkit 10.0 with optimization level O3. The graphs
are stored in edge list format, while converted to the required
format of compared works later. The result is reported with
an average of ten runs.

4.3. Performance Comparison

In this section, we compare SWARMGRAPH with related
works on computing a single graph. We use the protein
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Figure 7: The performance of scaling to one million graphs for (a) BC, (b) CC, and (c) APSP.

graphs (Benchmark I) and report the average computation
time of all the graphs in each group to represent the perfor-
mance.

We compare with four methods, the parallel CPU
method, the conventional GPU implementation, a state-of-
the-art GPU graph library — Gunrock [5], and a state-of-
the-art BC computation on GPU — hybrid BC [32]. Partic-
ularly, the parallel CPU method follows the parallel CPU
implementation in [33]. During the test, it runs with all the
available threads, i.e., 48. The conventional GPU method is
implemented on top of a recent breadth-first-search (BFS)
work on GPU [14]. For the widely used betweenness central-
ity computation, we further compare with two state-of-the-
art GPU implementations, hybrid BC [32], and Gunrock [5].

Figure 6 presents the speedup of SWARMGRAPH over
related works on computing a single graph, where the
techniques for many graphs computation are not used. For
betweenness centrality (BC) computation, SWARMGRAPH is
able to achieve 314x,93x, 24X, and 19x speedup over the
parallel CPU implementation, conventional GPU, Gunrock,
and Hybrid BC, respectively, as shown in Figure 6(a). Such
a significant speedup is attributed to two reasons, replacing
global memory with the fast shared memory, and reducing
the number of kernel invocations. SWARMGRAPH gets the
smallest speedup on G1 because hybrid BC benefits from
its smart sampling technique. SWARMGRAPH achieves the
largest speedup on graph group G4. With the increase
in graph size, the computation time of the related works
increases dramatically. That is, the average runtime from
GI1 to G4 increases 29x,13x,1.7x, and 9x, respectively
for CPU, conventional GPU, Gunrock, and Hybrid BC.
However, SWARMGRAPH only increases 1.2x because the
frequently accessed data are stored in the shared memory
which is not obviously affected by the data size.

On average, SWARMGRAPH is able to achieve 306 x and
26x speedup over the parallel CPU and GPU implementa-
tion for CC shown in Figure 6(b). Further, SWARMGRAPH
can get H6x and 29x speedup over the parallel CPU and
GPU implementation for APSP as shown in Figure 6(c).
Interestingly, the parallel CPU implementation is faster than
the conventional GPU on graph group G1, because the
conventional GPU implementation invokes the kernel mul-
tiple times which introduces considerable communication

penalties. On the other side, the CPU’s large last-level cache
(LLC) is able to cache the small graph (less than 128) which
boosts the CPU performance.

4.4. Scale to Million Graphs

In this section, we evaluate the performance of SWAR-
MGRAPH when the graph count reaches one million scales.
We use the one million synthetic graphs (Benchmark II).

The baseline method is SWARMGRAPH without pipelin-
ing. We evaluate the performance when the number of
graphs scales from one to one million. For each experiment
with graph count |g|, we randomly select |g| graphs from
the one million graphs and follow the graph size distribution
shown in Table 3.

Figure 7 presents the total runtime with different number
of graphs for the three algorithms. One can see that for the
one million graph computation, the pipelining technique is
able to bring 1.9x, 1.8%, and 1.3 speedup over the base-
line for APSP, CC, and BC, respectively. Such a pipelining
technique is able to get close to the upper bound speedup
for two-way pipelining, i.e., 2x. The pipelining technique
is able to achieve the best speedup on the APSP algorithm
because the graph loading time and APSP computation time
are close to each other on average. For smaller graphs,
the graph loading takes more time than APSP computation,
while for larger graphs, the APSP computation takes more
time. The speedup drops a little bit (from 1.9x to 1.8x) for
CC because its computation time increases. While the BC
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Figure 8: Accumulated runtime (minutes) for one million
graphs.



computation takes more time but it is still in the same order
of magnitude with graph loading time.

Figure 8 presents the total runtime of one million graphs.
The baseline method takes 283 minutes for BC, while the
pipelining method takes 218 minutes. For the CC algo-
rithm, the pipelining method is able to reduce the runtime
from 25 minutes to 13 minutes. For the APSP algorithm,
the pipelining method reduces the time from 31 minutes
to 17.5 minutes. SWARMGRAPH with 8 GPUs is able to
significantly reduce the total runtime. For the most time-
consuming BC algorithm, we are able to reduce the runtime
from more than 3 hours (218 minutes) to just 30 minutes.
SWARMGRAPH also reduces the CC computation time from
13 to 2 minutes, and the APSP time from 17.5 to 2.4
minutes.

5. Related Work

This section discusses the related works on graph com-
putation and the closely related linear algebra and matrix
computation.

Matrix computation. Small and medium-size problems
are common in matrix computation applications [34], [35],
[36], while a graph can be represented as a matrix. Motivated
by the fact that current numerical linear algebra libraries are
mainly focusing on the large matrix, Anderson et al. devise
a linear algebra computation framework on GPU specifically
designed for the small matrix [34]. They distribute the inde-
pendent problems into multiple GPU streaming processors
and compute them in the streaming processor’s register
files completely. They have demonstrated on four linear
algorithms, Gauss-Jordan elimination, LU factorization, QR
factorization, and least squares. Later, motivated by the need
for bulk computation on a large number of small matrices in
control systems, Tokura et al. narrow the matrix computation
to eigenvalue computation [35]. They design an efficient
GPU method for the small matrices by using GPU-specific
optimizations, including assignment strategy of GPU thread
to matrices and memory arrangement. Further, Heinecke et
al. try to improve small matrix multiplications from the
point of optimized code generation [36]. Particularly, they
design a code generator for the x86 vector instruction set.
The generator is able to create code without the auto-tuning
phase and only build the required kernel by using a just-in-
time compilation technique.

Graph computation. Similar to matrix computation,
small and medium-size graphs are common [37], [38]. Tar-
geting continuously generated small graphs, Bleco et al.
investigates the graph query problem on a large number of
small graphs stored in a database [37]. The graph query is a
subgraph matching problem. Their major innovations are on
the database side, including column-oriented storage, effi-
cient indexing mechanism, and the materialized graph views
of different types. Along this line, Pal et al. design a new
indexing technique for subgraph matching and approximate
graph matching queries on a large database of small and
medium-sized graphs [38]. The new indexing technique is

boosted by building a signature for every graph, which is
used for fast searching.

Gunrock is a high-performance graph processing library
on GPU [5]. It designs a novel data-centric abstraction
focusing on a vertex or edge frontier. It allows a developer
to quickly develop new graph primitives with small code
size and few GPU programming knowledge. Observing
that betweenness centrality computation on GPU is inef-
ficient, Mclaughlin er al. design a scalable and efficient
implementation [32]. Starting from a sampling technique to
approximately predict the structure of the analyzed graph,
they will figure out how the size of the workload changes
across iterations. Then, they will use a hybrid of vertex and
edge parallel techniques to compute. Breadth-first-search is
a key graph traversal algorithm used in SWARMGRAPH.
Motivated by the wasted thread scheduling and workload
imbalance in current GPU implementation, Liu et al. design
Enterprise to fast compute BFS on GPU [14]. They design
a streamline GPU threads scheduling technique which is
achieved by efficiently generating the frontier queue. They
balance the workload by dividing the frontiers (based on
out degree) into several and conditionally assign them to the
thread, warp, thread block, and grid. Further, they optimize
the usage of the direction-optimizing technique [39] on
GPU. Groute is an asynchronous programming model for
graph computation on multi-GPU [40]. SWARMGRAPH is
different from such regular GPU computation frameworks
by focusing on computing the large number of small graphs
motivated by real applications.

6. Discussion

This section discusses graph size and the extension to
more algorithms.

Graph size. SWARMGRAPH is mainly designed for the
massive but small size in-memory graphs. A graph that
cannot fit into the shared memory will be computed by the
conventional GPU implementation. However, we have seen
the increase of shared memory size in recent GPUs, e.g.,
Nvidia Tesla V100 can be configured to have up to 96KB
(doubles the size in K40) shared memory [41]. In the future,
we plan to explore the ways to increase the supported graph
size by integrating with graph partition methods. Also, the
newly introduced cooperative groups provide possibilities
of controllable and potential more efficient synchroniza-
tions [16], we will explore such opportunities for SWAR-
MGRAPH in the future.

Extension. SWARMGRAPH is a framework that can be
easily extended to support other graph algorithms and appli-
cations. The techniques for many graphs computation, i.e.,
pipelining and dynamic scheduler, are generic to any graph
algorithms. The memory-aware data placement technique
can also be generic as long as the metadata of the input
graph can fit into the shared memory. The kernel invocation
reduction (KIR) technique is limited to the algorithms that
can be divided and conquered, i.e., PageRank, node embed-
ding generation algorithm, other centrality algorithms. We
will add such algorithms to SWARMGRAPH in the future.



7. Conclusion

This paper presents SWARMGRAPH, a fast GPU-based
computation framework for million-scale in-memory graphs.
SWARMGRAPH carefully places different types of data in
different memory components and reduces the expensive
kernel invocations. For many graphs, SWARMGRAPH lever-
ages a pipelining technique and scales to multi-GPUs. In
a nutshell, SWARMGRAPH is able to outperform the state-
of-the-art GPU frameworks 19x for betweenness centrality,
29x for the all-pairs shortest path, and 26x for closeness
centrality.
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